I currently work as a postdoc at the University of Lübeck (Institute for Theoretical Computer Science). The main focus of my work is on developing efficient algorithms for problems in causal graphical modelling by combining graph theory, algorithmics and complexity theory.

From 2019 to 2024 I was a PhD candidate at the Institute for Theoretical Computer Science in Lübeck doing research in causality. I successfully defended my thesis on the algorithmic aspects of Markov equivalence in June 2024.

I studied Computer Science at the University of Lübeck from 2013 to 2019.

I have been involed in competitive programming and in particular the ICPC contests since 2015, first as participant and now as coach for the teams from Uni Lübeck as well as a regular jury member and local organizer in German ICPC contests (such the Wintercontest and the GCPC).

Together with Moritz Schauer and Martin Keller, I am one of the authors of the CausalInference Julia package. It provides efficient implementations of causal structure learning algorithms such as PC and GES as well as methods for finding adjustment sets in DAGs.

My CV is available here (English) and here (German).

Awards and Competitions
Invited Talks and Workshops
Full List of Publications

PACE Solver Description: UzL Exact Solver for One-Sided Crossing Minimization
M. Bannach, F. Chudigiewitsch, K.M. Klein, M. Wienöbst (IPEC 2024)

Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
M. Schauer, M. Wienöbst (PGM 2024)

Linear-Time Algorithms for Front-Door Adjustment in Causal Graphs
M. Wienöbst, B. van der Zander, M. Liśkiewicz (AAAI 2024)

Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs with Applications
M. Wienöbst, M. Bannach, M. Liśkiewicz (JMLR 24(213), 2023)

Practical Algorithms for Orientations of Partially Directed Graphical Models
M. Luttermann*, M. Wienöbst*, M. Liśkiewicz (CLeaR 2023: *Equal Contribution)

Efficient Enumeration of Markov Equivalent DAGs
M. Wienöbst, M. Luttermann, M. Bannach, M. Liśkiewicz (AAAI 2023: Oral)

Identification in Tree-shaped Linear Structural Causal Models
B. van der Zander, M. Wienöbst, M. Bläser, M. Liskiewicz (AISTATS 2022)

A New Constructive Criterion for Markov Equivalence of MAGs
M. Wienöbst, M. Bannach, M. Liśkiewicz (UAI 2022: Oral + Best Student Paper)

An Approach to Reduce the Number of Conditional Independence Tests in the PC Algorithm
M. Wienöbst, M. Liśkiewicz (KI 2021)

Extendability of Causal Graphical Models: Algorithms and Computational Complexity
M. Wienöbst, M. Bannach, M. Liśkiewicz (UAI 2021: Long Talk + Best Student Paper)

Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs
M. Wienöbst, M. Bannach, M. Liśkiewicz (AAAI 2021: Distinguished Paper)

PACE Solver Description: PID*
M. Bannach, S. Berndt, M. Schuster, M. Wienöbst (IPEC 2020)

PACE Solver Description: Fluid
M. Bannach, S. Berndt, M. Schuster, M. Wienöbst (IPEC 2020)

Recovering Causal Structures from Low-Order Conditional Independencies
M. Wienöbst, M. Liśkiewicz (AAAI 2020)

Blog Posts

On the Computational Complexity of Graph Moralization
15th October 2023

Three-Vertex Induced Subgraph Isomorphism in DAGs
11th October 2023

Thesis

Algorithms for Markov Equivalence
Submitted December 2023, Defended June 2024

Other Projects